使用变压器模型,多语言神经机器的翻译一直显示出巨大的成功。部署这些模型是具有挑战性的,因为它们通常需要各种语言的大词汇(词汇)尺寸。这限制了在上一个词汇投影层中预测输出令牌的速度。为了减轻这些挑战,本文提出了一种通过聚类的快速词汇投影方法,该方法可用于GPU上的多语言变压器。首先,我们脱机将词汇搜索空间分为不同的结合群,鉴于解码器输出的隐藏上下文向量,这导致词汇投影的词汇列要小得多。其次,在推理时,提出的方法预测了词汇投影中隐藏上下文向量的簇和候选候选代币。本文还包括对在多语言环境中构建这些群集的不同方式的分析。我们的结果表明,FLOAT16 GPU推断中的端到端速度增长高达25%,同时保持BLEU得分并略有增加记忆成本。所提出的方法将词汇投影步骤加速自身最多2.6倍。我们还进行了广泛的人类评估,以验证所提出的方法保留了原始模型的翻译质量。
translated by 谷歌翻译
本文介绍了Z-Code ++,这是一种针对抽象文本摘要优化的新的预训练的语言模型。该模型使用三种技术扩展了艺术编码器模型的状态。首先,我们使用两阶段的预训练过程来改善模型在低资源摘要任务上的性能。该模型首先是使用文本语料库进行语言理解的预先培训的,然后在汇总语料库中不断预先培训,以进行基础文本生成。其次,我们用分离的注意力层代替编码器中的自我发项层,其中每个单词都使用两个向量分别代表其内容和位置。第三,我们使用融合编码器,这是一种以层次方式编码长序列的简单而有效的方法。 Z-Code ++在13个文本摘要任务中的9个跨5种语言中创建了新的艺术状态。我们的模型的参数有效,因为它的表现优于XSUM上600倍较大的Palm-540b,并且在Samsum上的易经的200倍GPT3-175B较大。在零射击和少量设置中,我们的模型大大优于竞争模型。
translated by 谷歌翻译
本文提出了一种简单而有效的方法,可以改善两种情况下的直接(x-to-y)翻译:零射击和直接数据时。我们将编码器和解码器的输入令牌修改为包括源和目标语言的信号。我们在从头开始训练或使用拟议的设置对验证模型进行填充时显示出绩效增长。在实验中,根据检查点选择标准,我们的方法在内部数据集上显示了近10.0个BLEU点的增益。在WMT评估活动中,从英语性能提高了4.17和2.87 BLEU点,在零射击设置和直接数据可用于培训时。而X-to-y在零射基线上提高了1.29 BLEU,而在多到许多基线上提高了0.44。在低资源设置中,我们在X-TO-Y域数据上进行填充时会看到1.5〜1.7点的改善。
translated by 谷歌翻译
多语言神经机器翻译(MNMT)使一个系统能够将句子从多种源语言转换为多种目标语言,与传统的双语系统相比,大大降低了部署成本。但是,MNMT培训益处通常仅限于多一对一的方向。该模型在一对一的表现不佳,并且在零镜头设置中遭受了多种影响。为了解决这个问题,本文讨论了如何实际构建提供任意X-Y翻译指示的MNMT系统,同时使用预处理和填充的两阶段培训策略利用多语言。尝试WMT'21多语言翻译任务,我们证明我们的系统的表现优于大多数方向的直接双语模型和枢轴翻译模型的传统基线,平均提供+6.0和+4.1 BLEU,而无需进行架构更改或额外的数据收集。 。此外,我们还在极大的数据设置中检查了我们提出的方法,以适应实际的部署方案。
translated by 谷歌翻译
稀疏激活的变压器(例如专家的混合物(MOE))由于其极端的缩放能力而引起了极大的兴趣,这可以使模型大小的急剧增加而没有大幅增加计算成本。为了实现这一目标,MOE模型用变压器中的Experts子层取代了前馈子层,并使用门控网络将每个令牌路由到其指定的专家。由于对此类模型进行有效培训的共同实践需要在不同的机器上分发专家和代币,因此这种路由策略通常会产生巨大的跨机器通信成本,因为代币及其分配的专家可能居住在不同的机器中。在本文中,我们提出了\ emph {门控辍学},它允许代币忽略门控网络并留在其本地机器,从而减少了交叉机器的通信。与传统辍学类似,我们还表明,门控辍学在训练过程中具有正规化效果,从而改善了概括性能。我们验证了对多语言机器翻译任务中门控辍学的有效性。我们的结果表明,门控辍学可改善具有更快的壁式时间收敛速率的最先进的MOE模型,并为各种模型尺寸和数据集提供更好的BLEU分数。
translated by 谷歌翻译
本文介绍了Okapi,用于自然语言的新数据集到可执行的Web应用程序编程接口(NL2API)。此数据集是英文,包含22,508个问题和9,019个独特的API呼叫,涵盖三个域。我们为NL2API定义了新的组成泛化任务,该任务探讨了在推理阶段中的培训中从简单API调用外推开的模型能力。此外,该模型必须生成正确执行的API调用,而不是与现有方法进行正确执行,该方法评估具有占位符值的查询。我们的数据集与大多数现有的组合语义解析数据集不同,因为它是一个非合成数据集,研究了低资源设置中的组成概括。 Okapi是创建现实数据集和基准的一步,用于研究与现有数据集和任务一起学习组成泛化。我们报告了在各种扫描和okapi数据集任务上培训的序列到序列基线模型的泛化能力。当从简单API调用概括到更复杂的API调用时,最佳模型可实现15 \%精确匹配的准确性。这突出了未来研究的一些挑战。 okapi数据集和任务在https://aka.ms/nl2api/data上公开使用。
translated by 谷歌翻译
本文介绍了我们提交给WMT21共享新闻翻译任务的受限轨道。我们专注于三个相对低的资源语言对孟加拉,从印地语,英语往返Hausa,以及来自Zulu的Xhosa。为了克服相对低行数据的限制,我们使用采用并行和单晶体数据的多任务目标训练多语言模型。此外,我们使用后退转换增强数据。我们还培养了一种双语模型,包括后退转换和知识蒸馏,然后使用序列到序列映射来组合两种模型。我们看到迄今为止英语和来自Hausa的Bleu Point的相对收益约为70%,以及与双语基线相比,孟加拉和从Zulu的孟加拉和从Zulu的相对改善约25%。
translated by 谷歌翻译
大规模的预训练语言模型在广泛的自然语言理解(NLU)任务中取得了巨大的成功,甚至超过人类性能。然而,最近的研究表明,这些模型的稳健性可能受到精心制作的文本对抗例子的挑战。虽然已经提出了几个单独的数据集来评估模型稳健性,但仍缺少原则和全面的基准。在本文中,我们呈现对抗性胶水(AdvGlue),这是一个新的多任务基准,以定量和彻底探索和评估各种对抗攻击下现代大规模语言模型的脆弱性。特别是,我们系统地应用14种文本对抗的攻击方法来构建一个粘合的援助,这是由人类进一步验证的可靠注释。我们的调查结果总结如下。 (i)大多数现有的对抗性攻击算法容易发生无效或暧昧的对手示例,其中大约90%的含量改变原始语义含义或误导性的人的注册人。因此,我们执行仔细的过滤过程来策划高质量的基准。 (ii)我们测试的所有语言模型和强大的培训方法在AdvGlue上表现不佳,差价远远落后于良性准确性。我们希望我们的工作能够激励开发新的对抗攻击,这些攻击更加隐身,更加统一,以及针对复杂的对抗性攻击的新强大语言模型。 Advglue在https://adversarialglue.github.io提供。
translated by 谷歌翻译
最近的自然语言理解进展(NLU)已经被驱动,部分是由胶水,超级格,小队等的基准。事实上,许多NLU模型现在在许多任务中匹配或超过“人类水平”性能这些基准。然而,大多数这些基准测试都提供模型访问相对大量的标记数据进行培训。因此,该模型提供了比人类所需的更多数据,以实现强大的性能。这有动机侧重于侧重于改善NLU模型的少量学习性能。然而,缺乏少量射门的标准化评估基准,导致不同纸张中的不同实验设置。为了帮助加速这一工作的工作,我们介绍了线索(受限制的语言理解评估标准),这是评估NLU模型的几次拍摄学习功能的基准。我们证明,虽然最近的模型在获得大量标记数据时达到人类性能,但对于大多数任务,少量拍摄设置中的性能存在巨大差距。我们还展示了几个拍摄设置中替代模型家族和适应技术之间的差异。最后,我们讨论了在设计实验设置时讨论了评估真实少量学习绩效的实验设置,并提出了统一的标准化方法,以获得少量学习评估。我们的目标是鼓励对NLU模型的研究,可以概括为具有少数示例的新任务。线索的代码和数据可以在https://github.com/microsoft/clues提供。
translated by 谷歌翻译
本报告介绍了在大型多语种计算机翻译中为WMT21共享任务的Microsoft的机器翻译系统。我们参加了所有三种评估轨道,包括大轨道和两个小轨道,前者是无约束的,后两者完全受约束。我们的模型提交到共享任务的初始化用deltalm \脚注{\ url {https://aka.ms/deltalm}},一个通用的预训练的多语言编码器 - 解码器模型,并相应地使用巨大的收集并行进行微调数据和允许的数据源根据轨道设置,以及应用逐步学习和迭代背翻译方法进一步提高性能。我们的最终提交在自动评估度量方面排名第一的三条轨道。
translated by 谷歌翻译